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DIFFRACTIVE DISSOCIATION IN THE DUAL MODEL 
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We study the one twisted loop contribution to the five-point function ~n the Neveu- 
Schwarz model. The formulation obtained incorporates the requirements of duality and 
analyticity (Steinmann relations), provides a low-mass vector-pseudoscalar system pre- 
dominantly as an S-wave jF = 1 + state near threshold, conserves approximately t-channel 
helicity and thus is an interesting candidate for the phenomenology of diffractive disso- 
ciation. 

1. Introduction 

The diffractive dissociation of 7r into pTr together with the question of a possible 
A1 resonance in the plr system has been the subject of a long, often heated contro- 
versy that shows little sign of abating. 

On the theoretical side the quark model seems to predict unambiguously the 
existence of a resonant 3P 1 state with the quantum numbers of the A 1 (./Pc = 12+, 
I = 1). Good candidates for the I = 0 and I = ½ SU(3) partners of the A1 exist. In 
addition there are chiral symmetry arguments for the A 1 mass mA = X/~ mp. 

Experimentally there was early observation of a broad peak in the prr system 
centered near 1.1 GeV. However, a resonance interpretation of this peak was dis- 
favored because the shape of the peak depended on the momentum transfer and 
because of the detailed behavior of the partial-wave phases. Very recently the reso- 

nance character of the A1 has been supported by new data on 3-pion production 
and its backward production [ 1 ]. Whatever may be, the exact role of the background 
given by a non-resonant amplitude in this region remains an open question. 

Theoretical work *** on this non-resonant peak is based on the Drell-Deck model 
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Fig. 1. Deck diagram for the diffractive dissociation of a pion into a system composed of a vector 
meson panda pion. 

[3], which can be described by the graph of fig. 1. The incident pion virtually disso- 
ciates into a p~r system and the virtual pion returns to its mass shell by diffractively 
scattering off the target particle. Because of the sharp diffractive peak the amplitude 
is dominantly contained in the region near tl = 0. Deck argued that the pion pole in 
t2 would enhance the amplitude at small values of t2 also. The combination of these 
two effects would kinematically limit the amplitude to small values of the pzr mass. 
The distribution as a function of the pn mass grows from threshold as phase space 
opens up and then fails as a result of these kinematical effects producing a peak near 
threshold. The pion pole graph would also yield a t-channel helicity conservation 
near threshold as is experimentally observed [4]. 

However, the Deck model has never succeeded in reproducing the mass peak in a 
convincing way. The pion pole does not give a sharp enough cut-off in t2 and more 
recent treatments introduce an exponential damping in t2 justified on the basis of a 
reggeization of the pion. It was also noted [5] that near tl = 0 the pion pole is 
approximately cancelled due to the factor s~P(tt) and to the kinematic relation (as 
usual we define a i as the trajectory of particle i and/a~r is the pion mass) 

sl t2) s---A---- 
S 2 --/.t 2 ' 

which is valid near t~ = 0. This being the case there seems to be no reason to neglect 
the graphs where the pomeron couples to the incident pion or to the p meson. These 
graphs do not clearly predict t-channel helicity conservation, however. In addition, 
duality has taught us to distrust single-particle exchange models and interference 
models where one simply adds graphs. 

A step towards a correct dual treatment has been made recently by the Saclay 
group [6] who describe the lr ~ pTr + pomeron sub-amplitude by a sum of three 
beta functions containing the expected poles in (s2, t2), (t2, u2), and (u2, s2), 
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Fig. 2. Momentum diagram for the contribution of the single-loop graph to the five-point func- 
tion and the equivalent 2-to-3 amplitude with channel invariants. 

respectively. This approach, based on the Veneziano Born term, treats the diffrac- 
tive dissociation as a planar amplitude. As a refinement of their attempt at dualiza- 
tion, these authors suggest for the future the use of the Virasoro-Shapiro amplitude 
[7] (VS) which has the correct structure of dual poles in (s2, t2, u2) together. It is 
clear that even this is not fully appropriate since the VS amplitude corresponds to 
pomeron-pomeron elastic scattering in the dual model. 

The correct lowest-order amplitude for diffractive dissociation is given by the 
twisted loop graph of fig. 2. In addition to having the correct topological structure 
of poles in s2, t2 and u2 all dual to each other, the amplitude corresponding to fig. 
2 will incorporate the f dominance and other good features of the dual pomeron. 
The dual amplitude we will write down will be a function of ap(t l ) ,  af( t l ) ,  a~r (s2) 
and ap (u2). It will be ghost free for al,(0) --- 2ap(0) = 2. For physical values of  the 
intercepts ap(0) = 2t~p(0) = 1, the amplitudes will still be ghost free on the leading 
trajectories and will still have the correct analytic and topological structure. It is 
therefore this latter amplitude that we propose as a realistic model of the dissocia- 
tion process. 

Even after making this shift to physical intercepts the generalized Veneziano 
model is unsatisfactory for phenomenological purposes. This is because of the 
tachyons that exist in the model at ap( t l )  = 0 and ap(u2) = 0. In order to avoid 
these poles in the physical region we will work with the Neveu-Schwarz model 
(NSM) [8] which has no tachyons on the leading pomeron and p, f trajectories. The 
NSM has poles at a~(s2) = 0, 2, 4 . . . . .  Thus with physical intercepts there is no 
resonance at the A 1 position aTr(s2) = 1. The model is therefore ideally suited to 
determine to what extent the dynamics of diffraction can build the broad bump 
near threshold in the 7rp system. 

In sect. 2 of this paper we calculate the twisted 5-point loop in the Neveu- 
Schwarz model with an external p meson. Sect. 3 is devoted to a study of  the 
analytic structure in the single-Regge limit. This will provide a basis for the 
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examination of  the Deck phenomenon in the NSM. As we shall see the diffractive 
dissociation via the dual pomeron has a rich and complex structure which bears 
little comparison to the early Deck amplitudes. In sect. 4 we examine the double- 
Regge limit sl ,  s2 ~ 0% sls2/s fixed. 

A numerical evaluation and a phenomenological discussion of the amplitudes 
including a partial-wave analysis are presented in sect. 5. In particular, the existence 
of  an A1 effect is clearly shown. Some technical problems are discussed in appen- 
dices A and B. 

2. Amplitude construction 

We will calculate the graph of fig. 2, where particles 1,2,  3 and 5 are rr mesons 
represented in the NSM by 

Vn(ki, Pi) = :eiki " Q(Pl)ki " H(Pi): , (2.1) 

where 
oo 

H u ( X  ) : ~ (b~X - n - U 2  + b~+Xn+'/2) .  (2.2) 
n=O 

Particle 4 is the P meson represented by 

Vp (k4, P4) = :eik4 ' Q(p4) [k 4 . He"  H + e • P] : , 

with 

(2.3) 

o o  

Pu(X)= i x d Q u ( X ) -  i ~ (n + e ) [  P- (n + 2e)~ ' / 2"  n+"~+e n . . - n - e ,  
dX n=o ~_- n~ j ~a u a -  - a u a  ) .  

(2.4) 

In (2.2) and (2.4) the b u and au are operators obeying Fermi and Bose statistics, 
respectively; e is the polarization vector of  particle 4 and ~ an infinitesimal quantity. 

We are thus calculating the process rrlr ~ rrOrr via pomeron exchange. However, 
since in dual models, as in nature, the pomeron is a factorizing singularity our result 
will be proportional to a realistic dual amplitude for rrp ~ rrpp. The constant of  pro- 
portionality will be the pomeron form factor to the 7rTr state divided by the pomeron 
form factor to the p~ state. This depends only on t ] ,  the momentum transfer carried 
by the pomeron, and is easily measured experimentally. The kinematics of  fig. 1 is 
such that 

k l  . k  2 = - -O~o( t l )  , (2.5a) 

kl  " k3 = Ohr(Sl) + Otlr(tl) -- O-n(t2) , (2.5b) 
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kl k4 = 

kl ks = 

k2 k3 = 

k2 ka = 

k 2 k s  = 

k3 k4 = 

k3 k s  = 

o~(s) - ~ ( s ~ )  + a , ( t 2 ) ,  (2.Sc) 

- % ( s ) ,  (2.5d) 

- % ( s l ) ,  (2.5e) 

- ~ ( s )  + ~ ( s l )  + ~ ( s 2 )  , (2.50 

oqr(s ) - tX~r (S2) + tX,r(tl) , (2.5g) 

--%r(S2), (2.5h) 

a~(s2) + a~ (t2) - % ( q ) ,  (2.50 

k 4 k 5 = - o L r r ( / 2 ) .  (2 .5 j )  

For convenience the Regge slope has been normalized to ~. Otherwise each mo- 
mentum should be multiplied by 2x/~.  These relations hold for the unphysical inter- 
cepts of the NSM. However, after having written the amplitude in terms of these 
trajectory functions we will for phenomenological purposes use physical intercepts. 

The loop graph of fig. 2 is given by a trace over all the intermediate excited states 
of the model. Such traces with external excited states are most conveniently done 
by the method of ref. [9], with the loop momentum integration being given by the 
trace over the zeroth (translational) mode. For further details the reader can refer 
to that article. 

A s = ' S -  " ' o  o o 0 P4 P3 P2 
(2.6) 

x Tr{wL°~V.(kl, 1) V~ (k2. P2) ra 1,'. (ka, pa) vp (k4, P4) V. (ks, Ps)}. 

Here Lo is the dual Hamiltonian and g2 is the twist operator. We evaluate the trace 
in the critical dimensionality of space-time (10 for the NSM) and with the unphys- 
ical masses of the p and rr, all invariants being absorbed into trajectory functions by 
eqs. (2.5a-j).  In (2.6), S ( w )  is a factor from projecting the circulating states onto 
the physical subspace: 

o o  

,n= l + w m - 1 1 2  " (2.7) 

Details on trace calculation are given in appendix A. To study the pomeron singu- 
larity it is customary to make the Jacobi imaginary transformation 

, _ eiOi 2rri In Pi 
P i  "+ P i  = = exp - -  , (2.8a) 

In w 

4rr 2 
w -+ w' = r 2 = exp - -  (2.8b) 

In w 
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In the limit in which the pomeron cross-channel energy becomes asymptotic the 
loop integral is dominated by the region near r --- 0. Therefore, we can expand the 
integrand to lowest order in r but keeping all orders in ra(s) and ra(sl). It !s also 
convenient to redefine the angular variables: 

1 
0 3  = O = ,)t 3 0 4  + ½02 , (2.9a) 

t 
04 = 04 + o ,  (2.9b) 

0 s = 0~ + o .  (2.9c) 

Then, dropping all primes, the amplitude becomes 

1 27r 21r 27r 05 

A , = g '  f d r r - a P ( q ) f  d7 J '  d02 f dos f d04(2 sin ½02) -a~`t') 
0 0 0 0 0 

10 "~-a~r (s2)(2 X (2 sin ½(0s - 0 4 ) )  -°t ' /r(t2) (2 sin ~ 4 '  sin ½0s) %(u2) 

× exp[-8ra(s) sin ½02 sin ½(0s - 04) cos(3, + ½0s)] 

V(r2]D/48(ln W]a Tbl 
X exp[-8ra(sl) sin ½02 sin ½04 cos 7] / \w /  \-~--n ] . (2.10) 

The trace Tb is given in appendix A (cf. eq. (A.23)). In the limit r ~ 0 one finds 

7r (2.11) 
X(1/2)~j/pi, w) "" In w sin ½(0/- Oi) ' 

X(Tl/2)(p//pi, w) ~-- i 27ri ~ 2rl/2 cos ½(o + Oj -- Oi) . (2.12) 
\ ln w!  

In the same limit the G's of (A.14) and (A.15) behave as 

( 2.i  
G(Pi/Pj, w) = \l-~w] (-½ cot ½(Oi - Oj)) , (2.13) 

Gx(Pi[Oj, w) = ( 2hi ] ( -2r  sin(0i - 0j + o)). (2.14) 
\ h a w /  

The partition function in (A. 16) satisfies 

(1 + wn+l[2) O = 1-I (1 + g 2 n + l ) O  . (2.15) 
n = O  n = 0  

As r tends toward zero, terms in G T will be negligible compared to terms in G. 
Similarly XT would be negligible compared to X were it not for the fact that terms 
in ×T always multiply large s-channel variables whereas terms in × multiply t-channel 
variables. 
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The two kinematical regions of  present interest are the fragmentation region 
a( t l ) ,  a(t2), a(s2) < <  a(Sl) <~ a(s) and the double-Regge region a ( t l ) ,  o~(t2) < <  a(Sl), 
a(s2) < <  a(s). Let us therefore neglect a ( t l ) ,  a(t2) and a(s2) in (A.23) and put 
a(sl)  = Ka(s). The spin factor (A.23) then considerably simplifies: 

- -  Tb = e" ksa2 (s){K(1 --I~)X(Ps/P4)[XT(,O3)XT(IO4/P2 ) 

- XT(P3/P2)XT(P4)] + iG(P4/Ps) K [XT(P3/P2)XT(PS) 

-- XT(,Os/P2) XT(,O3)] } -- e" k3tx(s) 2 ((1 - K) X(P4/P2) 

× [XT(P4/P2)XT(PS) - -  XT(P4)XT(P5/P2)] 

-- iG(P41P3) t¢ [XT(P3/P2) X(Ps) -- XTCOs/P2) XT(P3) ]  } • (2.16) 

Using (2.11) to (2.15) we have in the limit of  small r 

-(r2~-D/48~ 27r ~ 3 . 1 ( e ' k s K  
Tb- \ - -~]  \l--~ww] 2ra2(s)sm2021sinY(-~s---04) 

e "k 3 
× (sin 105 cos 1(0 s - 04) - (1 - ~) sin 104) 

sin 104 
\ 

(1 ~) sin 04))} (2.17) X (K sin 10s cos i041 + - ½(0s - • 

Thus in the large-s limit there are no p-meson spin correlations across the large 
rapidity gap spanned by the pomeron.  Such correlations are carried by the pomeron 
daughter trajectories and could be studied by developing the next order in r. More- 
over, at the threshold of  the final dissociated pTr system, e • k 3 ~ 0 and the ampli- 
tude is totally aligned along ksu. Since at this threshold the p and pTr helicities are 
identical, the pomeron trajectory is expected to conserve t-channel helicity to lead- 
ing order in c~(s) in the reaction zrTr ~ (,07r)Tr at enhancements near the pTr threshold. 
Factors in k3 break this conservation when the energy s2 increases, thus predicting 
a breaking aliUthe stronger as the mass of  the produced system is heavy. 

We now have the spin factor in a concise form for insertion into the integrand of  
(2.10). Since the integral is dominated for large s by r --~ 0 we can without error 
scale out the sin 102 factor in the exponentials by writing r = l r '  sin l02 . The 02 
integral can then be done trivially and gives the pomeron form factor to the target 
(pion) state: 

2r t  

f d02(2 sin ½02) ~P(t l ) -af (q)-]  = f p ( t ] )  
0 

- ~ a p ( t l ) - - a f ( t l )  ~ r I t ^  [÷ 
= ~ ~[~t '~P~,]) - af( t l )) ,  ½] • (2.18) 
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In the remaining integral we can simplify by putting 0 = t20 s and q~ = 1041 

27r n 

A s = gSfp(t 1) 2-an (t2)-~Tr(s2)-~p(u2)+20~($)2 f d r  r 1 --ap(tl) f d3' f dO 

0 0 

0 

X f dq5 (sin(O - qb) )  - a ~ r ( t 2 )  (sin O) -~p(u2) (sin ~ ) -~ ( s2 )  
0 

X exp(-4r[a(s) sin(O - as) cos(3' + O) + a(s l )  sin q5 cos 3']} 

e . k s r  
X [ s]-n(-O--- alp) [(1 - r )  sin ¢b - sin 0 cos(O - qb)] 

e "k 3 } 
+ [K sin 0 cos qb + (1 - r )  sin(0 - qb)] (2.19) 

sin q5 

3. The single-Regge limit 

In this section we wish to explore the behavior of (2.19) in the region of large 
a(Sl) and a(s) but with s2 near the lrp threshold. This is the region of interest for 
the Deck effect. 

= ,)fl If we put 3' - 0 (afterwards dropping the prime) we can write 

27r 7r 0 

As = -gSfp(t,)22-af(t ')a(s)Zfdrr 1-ap`t`, f d3" f dO f dO 
0 0 0 

X (sin(O - q~))-~(t2) (sin O) -~p(u2) (sin (I~) - ~ r r ( s 2 )  

X e xp (-4r0:(sl)[sin q5 cos(7 - 0) + ~-1 sin(0 -q5) cos 3'] ) 

sin 
X e "ks/~ 2 sin(O-ep) (~e "k s +(1 - K ) e  "k3) 

sin(O - cb) 

sin 
+ K e • (ks - k3) sin 0 cot ¢I,} . (3.1) 

We can simplify the nomenclature, putting c~p (t I ) = ap, af(t 1) = off, a n ( t  2 ) = ~2, 
O~(S2) = a(S2), ao(U2) = a(U). The kinematics is such that c~ 2 + a(s2) + a(u) = af. 
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On the second exponential in (3.1) let us use the Mellin-Barnes transform 

+i= an r ( -n)  exp{-4rot(sl)K -1 sin(0 -qb) cos 7) = f 2z'----~ 
--ioo 

X [4ro:(s 1 ) K -- 1 sin(0 -- ~) COS 7] n (3.2) 

In the limit of 0~($1 ) becoming asymptotic along the imaginary axis we can perform 
the r integration: 

A s = _gSfp ( t l )  2 2-°tf Or(S) 2 [4a(s i )laP-2 

+ioo ×Y 
--loo 

d n  21r n 0 

P(-n)l- ' (n+2-oq,)K -n f d7 f dO f dqb 
0 0 O 

X (sin • cos(7 - 0)) av -2 -n  [sin(0 -¢b) cos 7] n(sin(0 -¢,))-a2 

X (sin 0)-a(U)(sin ¢I,) -a(s2) ( } . (3.3) 

The curly bracket in (3.3) is the same as in (3.1). 
The next step is the evaluation of the integral over 7 

2n  

G(O) = f d~, cos ~'n(cosO' - 0))  ~ P - 2 - n  . 

0 

This has a simple expression in terms of a simpler integral 

n 

H(a, b, 0 ) = f  d7 (sin 7)a(sin(3,-0)) b . 
0 

The solution of this simpler integral is 

H(a, b, 0) = (2 cos 10)a+b+ 1 B(a + 1, b + 1) 

X 2F1(1(1 + a -  b),½(1 + b - a ) ; l ( a  +b + 3);cos 2 ½0). 

Paying careful attention to phases one finds 

G(O) = (1 + e-in(aP- 2)) H(n, ap - 2 - n ,  O) 

+ (e - inn  + e - i n ( a P - 2 - n ) ) H ( n ,  Otp - 2  - - n ,  ff - 0 ) .  

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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Using various hypergeometric function identities one can show that 

_27r3/2 e-inaP/2 
G(O) = P[~C~p] r[~(3 - ~v)] 2El ( 2 - ~p + n, - n ;  ½(3 - av);  sin 2 ½0). (3.8) 

Clearly the gp integrals in (3.3) are also of  the form (3.5): 

0 
F(O) = f dcb (sin dxb) c~P- 2--oe(S2)--n (sin(0 - ~ ) ) n - c ~  2 

0 

K 2 s i n  

X e - k s  s in(0 - q)) (~e" ks + (1 - K ) e  "k3) 

X 
sin(0 - ~ )  

sin ,I, 
+ K s i n 0 c o t q b e ' ( k  s - k 3 )  } . (3.9) 

One finds in fact, after factorizing some common P functions, 

F(O) = (2 sin ½0) 2~'-2 F(7 + o~ - 2) P(3' - a +  1) /7(0) 
P(27 + 1) 

with 

(3.10) 

~'(0) = e" ksK2(2 sin ½0) 2 (7 + a - 2)(3' + a - 1) 2Fl(a ,  1 - a;  1 + 7; si n2 ½0) 

l 0 2 3' 1 ) ( 7 - a + 2 )  - ( ~ e ' k  s + ( 1 - K ) e ' k a ) ( 2 s i n  2~ ) ( - a +  

X 2 F l ( a -  2, 3 - a ;  1 + 3,; sin 2 ½0) + 2r sin20 

X e" (ks - ka)  7(3' - a +  1) 2F1 (oe, 1 - a; 3'; s in210) ,  

where to shorten the formulae we have put 

a -  ½ ( a p - a ( s 2 )  + a2 + 1 ) - n ,  

.~ - ~(ap - a(s2) - a2 - 1). 

In substituting (3.10) and (3.8) into (3.3) it is convenient to define 

P q 
i , ( a l ,  a2, a3 ... l_,(b])_l] . 

\ b l ,  b2, bq i=1 "= 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

We then have 

+i~* dn /~-n 
A s = g S f p ( t l )  2 - a f -  17r3/2 [_4ia(s l ) ]  av K -2  f 

--/'oo 
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_ / n + 2 - O t p ,  n - - a 2 , - - n ,  a p - a ( s 2 ) - 2 - n ) R ( n )  ' 
X r t ~ a p  ' 1(3 - CZp), a p -  a(s2) - o~2 

(3.15) 

where 

R(n) = j dO (2 s i n  1 0 ) a P - a f - 3  

o 

X 2F1 (2 - o~v + n, - n ;  ~(3 - O~p); sin 2 ~0)F(0) .  (3.16) 

The important features of  R(n) are that it has no poles in the finite n plane and its 
behavior at asymptotic n is such that, since K is always <1,  the contour in (3.15) can 
be closed to the left. 

A s = gSfp( t l )  2 - a f -  111.3/2 [ ~ i a ( s l ) ]  aP K -2 

o o  

X 1 ' - 1  (~c~p, 21-(3 - C~p), Ctp - a(u) - t~ 2 + 1) ~ gk ( - 1 )  k 
k=o k! 

X (P(Otp - o~ 2 - k - 2 ,  2 - a v  +k, k - 0~($2)) K 2 - ~ P R ( ~ p  - 2 - k )  

(3.17) 

+ F(u 2 - ap + 2 - k, k - 0~2, O/p - tx($ 2 )  - ot 2 - 2 + k) K --<x2 R (a2 - k))  . 

Using the formulae given in appendix B the values of  the function R appearing in 
(3.17) can be determined analytically in terms of  a finite sum of  ratios of  gamma 
functions. In this form the amplitude is amenable to a numerical study of  its pheno- 
menological properties. This together with the appropriate phase-space considera- 
tions will be discussed in sect. 5. 

In order to understand some essential characteristics we now consider the dominant 
contributions for the limiting value of n : K ~ 0 and near the forward directions tl ~ 0, 

t2 ~ 0 .  
The analytic structure of  (3.17) is similar to that found in the Born term. Each of  

the two terms has unphysical poles at integral values of  ap ( t l )  - o~r(t2). Only in the 
sum do these poles cancel. This cancellation can be shown independent of  the struc- 
ture of  R(n). However, if one attempts, for small K, to truncate the series at any finite 
k there will be uncancelled poles somewhere in the physical region. This situation 
presents a challenge to the phenomenologist which has not been adequately studied 
even in the simpler case of  the Born term. If  one restricts one's attention however to 
a small region in a p  - o~2 the amplitude is well-represented for small r by a few intel- 
ligently chosen terms in k. The amplitude of  course is strongly damped in tl because 
of  the pomeron Regge behavior. I f  one therefore restricts one's attention to the 
region near C~p(tl) - c~Tr(tz) ~ 1 (e.g. t l ,  t2 ~ 0 in the case of  physical intercepts), 
one can see that the dominant terms for small g are those proportional to R(c~2), 
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R(0/2 - 1) andR(0/p-2).A priori the leading terms as K ~ 0 are given by R(0/p - 2 )  
and R(0/2 - 1) since they provide dominant behaviors in ¢-ap+2 and ¢ -a2+t  , res- 
pectively: 

A 5 (0/P --  2) 

1 0/ 10/ 1 0/ 10/ = CK_,~p1'l~.(0/p-. f), 1 - ~ .  p, i (  p - 0 / 2 ) - 1 , - ~  (s2), ~1  - a ( u ) )  '~ 
] 

\1(0/p + 1 - 0/(u)- 0/2), ~0/P, ½(0/P - a2 - 0/(s2)), ~(3 - a ( u ) -  0/(s2)) 

X (K0/($2) [(0/p - 0/2 -- 2) C" (k 5 - k3) - (0/p - 0/(U) -- 0/2 -- I)~ e" ks ] 

- (1 - 0/(u) - tR(s2)X0/P - ol 2 - 2 )  e "  k 3 ) , (3.18) 

1)=4CK_a21"[~(ae-af),. 0/p-~(0/f  + 1), -~( .2-0/p)+ 1, 1 - ½0/2' ~, 
As(a2 

\ a p + l ( 1  _ a  2 __o/f) ,  l a p  ' l ( 0 /p  - -0 / f  + 0 / 2  + 1) / 

X (K e" kS(a P - -  0 / ( S 2 )  - -  0 / 2 )  - -  e" (ks - k3)} , (3.19) 

where C is the common factor 

C = 2 - a f -  3g  5 7r3/2fp  ( t  I )(-2i~(s 1))aP , (3.20) 

and As(Y ) is the contribution to the amplitude given by the pole at n = y in (3.15). 
The form (3.18) has no t2 channel resonance poles (no pion pole in particular) 

possesses singularities in a(s2) and a(u) at even and odd integers respectively, dis- 
plays typical factors of an f-dominated pomeron-reggeon-pion vertex. Moreover, at 
a singularity in a(u) (or 0/(s2)) all resonance poles in a(s2) (or a(u)) disappear thanks 
to 1 "-1 [1(3 - a(u) - 0/(s2))]. Thus the Steinmann relations [10] forbidding simulta- 
neous discontinuities in overlapping energy variables are obeyed. The form (3.19) 
has only singularities at even integers of a 2 . Only the term R(a2) contains the pion 
pole in a 2 and therefore for the present we restrict our attention there: 

As(a2)  = 4C•-a2 e "ks 

1 1 + 1  1 + 1 
~ ( a p - -  a f ) ,  a p  --  ~ ( a f  ) ,  2(a2 - ap)  1, - ~ a 2  

X1'(0/p- ~(af+a2 + i) ' 1( 1 +0/P--0/f + 0/2), 10/p ) " (3.21) 

This contribution has no discontinuities in overlapping energy invariants, in particu- 
lar no resonances in the s2 channel, and thus appears to be an interesting candidate 
for a Deck effect like contribution in the dual framework, since this amplitude is 
diffractive, includes the pion singularity and totally lacks resonances in the s2 chan- 
nel. 
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Two further interesting points must be mentioned. This part of  the amplitude is 
t-channel helicity conserving for the lrp system and becomes relatively more impor- 
tant for small K at the threshold production of this system since the leading behavior 
of  R(c~p - 2) is now r ] - a P .  

4. Double-Regge limit 

For Born-term reggeons a structure of  the five-point amplitude Bs consistent with 
the Steinmann relations emerges naturally [ 11 ]. The particle-double-Regge vertex 
breaks up into two components corresponding to two possible combinations of  sin- 
gularities in non-overlapping variables: 

B RR =~l(t1)32(t2)otal($1)ot~2($2)[}t}2171a1V(Otl,0t2;Ti)+ 1 <--~ 2] (4.1) 

where 

}i ri + e-inai }i] ri'Q + e-ilr(ai-a]) _ or(s) 
= , = , ,7 a ( s , ) a ( s 2 ) '  

oo 
- o q  + n, oq - o~ 2 - n)  

v ( a , ,  ~2 ; 7 )  = ~ r n - n  
n=o n + l  

(4.2) 

ri is the signature of  the trajectory a i. In expression (4.1) it is worthwhile to note 
the divergence of signature factors from a simple factorization hypothesis, and the 
allocation of  poles between the two parts (cq or c~ 2 integer, respectively). This 
structure has been of great importance in the discussion of decoupling theorems 
[ 12] and possesses interesting phenomenological consequences [ 13,14]. 

Now our aim is to discuss the analytic structure of  the pomeron-particle-reggeon 
vertex; avoiding a complete but quite tedious calculation we prefer to limit our- 
selves to the study of  leading contributions as r/-+ oo.  For this purpose it is sufficient 
to take first the limit ~ s 2 )  -+ oo with B and t 2 fixed in eq. (3.17). The leading term 
is obtained from R(ap  - 2): 

BPR(Otp -- 2) = -C ' (2r l )aP2aP-a2e  - i ~ 2 / 2  e" k 3 

r " a - (  I r a  t~ + 1 
× (4.3) 

\~  V, )-,. 2 -  f ) 

C' = 2-1 --~f't/' 3/2fp (t 1 ) a V  ($1 ) Olaf2 (S 2 ) ; (4.4) 

and the term required by analyticity in order to compensate the pole at ~p = t~2 is 
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given by R ( o t  2 - 2): 

BPR(ct2 -- 2) = -C'(2~)a2e-i lrc~p/2e " k 3 

( 1 1 1 1 _ a f )  1 (4.5) 1 - ~a  2, ] (a2  - O ~ a ) ,  Otp  - ](Olf + 1), ~(~p 
X r  1 1 1 " 

~ p ,  ~(ap +~2 - ~ f -  1), ap *~(1 - a f - a 2 )  / 

However, this last contribution does not possess the pion pole and another very 
important contribution in this limit is 

BPR(ot2) = C'(2~)~2e-ilrclp/2e .ks  

( 1 1  + 1 1 ) 
--~-0~2, ~.(a 2 -- ~p) 1, C~p - ~(af + 1), ~(ap - c~f) (4.6) 

X r  1 1 l 
~ p ,  ~(t~p+O~ 2 - t 2 f +  1), ~p - , ] ( 1  +o~f +0~2) 

Some comments are in order concerning these expressions. 
(i) Since P functions of the form F [I (k - c~ 2)] never appear in (4.5) or (4.6) and 

since (4.3) and (4.5) display the factors exp [-½i7r~2] r [1 - ½~a] and exp [-~iTr~v] 
X P[1 -- ~0£ 2 1  ], respectively, the same signature factor ~i~]l occur in the pomeron- 
particle-reggeon vertex and in the particle-double-regge vertex (cf. eq. (4.1)). More- 
over, the pomeron can be coupled only to a reggeon of positive signature. This last 
result is not surprising since only resonances at even integers are present in the o~ 2 
channel. 

(ii) The spin dependence induced by the leading term (4.3) is very different from 
the spin dependence given by the pion pole (eq. (4.6)). 

(iii) Unlike in (4.1), there is no symmetry between (4.3) and (4.5). This is a direct 
consequence of the distinct character of the pomeron compared to reggeons in the 
dual models. 

5. Numerical results and discussion 

We present now a detailed numerical evaluation of the amplitude with appropriate 
phase-space considerations and comparison with experimental features. Both the 
double-Regge limit (DR) and the single-Regge formulation (SR) are studied. Although 
the DR limit is a priori inadequate (since in the domain of interest one of the sub- 
energies is barely above threshold) we think that this formulation merits some con- 
sideration since it avoids the presence of poles (resonances) in the physical region, a 
defect inherent in the SR formulation and more generally in all Veneziano-like for- 
mulae. 

Moreover, from well-known duality phenomenology, the DR description is 
believed to give on the average a good representation of resonance effects. 

We are first confronted with the difficulty associated with the presence of unphys- 
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ical poles in our amplitudes at integral values of 0tp( /1)  --  ~Tr ( t2) -  
We have verified that in the kinematic domain of interest: [tll ~< 0.5 (GeV) 2, 

Mmr <~ 1.6 GeV, and for our choice of trajectories t~p(t I ) and ct~r(t2), a unique singu- 
larity appears for etp( t  1 ) - - t ~ r ( t  2 ) = 2. In the SR limit this spurious pole is automatically 
cancelled order-by-order in the expansion in k (eq. (3.17)). In the DR limit our formu- 
lation includes the dominant term (4.3) in energy, however strongly suppressed by the 
kinematical factor e. k3, and the term (4.6) exhibiting the pion singularity. This last 
term having a spurious pole at O~p(t 1 ) --  Ot~r(t2) = 2, we must add an extra piece cancelling 
this unwanted singularity. This piece is given by a non-leading order contribution in 77 
when the limit ~(s2) -~ ~o is taken in As(or P - 2): 

_ C , ( 2 r ? ) a p -  2 2 a p - a  2 - 2  e • k s e - i~m2/2  

xr/1-½ p, }(ap-af), ~(~p-a=)-1) 
} ( 3  + - 

Conventional phenomenological trajectories have been used: 

ae( t l )  = 1 + ½tl, O~f(tl) = 0.5 + t l ,  a~( t z )  = _#2  + t2 • 

Furthermore, it was necessary to give a small imaginary part to the trajectory in 

tl=-;O12C~V 2 

60. 

40. i 

[¢ - 

20. '~ 

I I I I I I , 
1.1 1.3 7.5 

MOlt ( GeV ) 

Fig. 3. Calculated 07r mass distribution in the single-Regge limit, for three values of  the transfer 
momentum t 1 ( -0 .012 ,  -0 .055  and -0 .11  GeV2). Solid curves: full amplitude; dashed curves: 
I+S, M = 0 contribution. 
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! 
"i 4060F ~ - ' 012GeV2  

20 

0 1.1 1.3 1.5 r~"p~t ( GeV ) 
Fig. 4. Calculated p~r mass distribution in the double-Regge limit for three values of the transfer 
momentum t I (-0.012, -0.055 and -0.11 GeV2). Solid curves: full amplitude; dashed curves: 
I+S, M = 0 contribution. 

the production channel a(s2): 

a(s2) = So + s2 + i?,v~2 - (rnp + ~ ) ~ ,  

in order to add an ad hoc width to resonances. Thus, in the SR limit results depend 
on the parameters So and X which control positions and strengths of  resonances. The 
choice adopted (So = 0.137 GeV 2 , ~ = 0.1825 GeV) corresponds to a peak near 1.3 
GeV slightly emerging from the non-resonant background as data show [ 15]. Finally, 
it is interesting to notice that the series (3.17) converges quite rapidly; tb_e first three 
terms are sufficient to give a very satisfactory approximation in the restricted kine- 
matic domain considered. 

Our most significant results are depicted in figs. 3 to 6. The lab. momentum was 
arbitrarily taken to be 13 GeV/c and masses of  the proton were assigned to particles 
1 and 2 in order to recover a realistic kinematical situation. As a practical matter,  
our conclusions are almost insensitive to variations in energy or to this last assign- 
ment.  We see in figs. 3 and 4 that both calculations furnish a strong enhancement 
in the invariant-mass distribution just above threshold. A partial-wave analysis allows 
us to show that the low-mass distribution is predominantly an S-wave JP = 1 + state. 
The method of  partial-wave analysis is borrowed from Berger and Donohue [4], 
where technical details can be found. The partial waves were obtained in the p~r 
t-channel system of  axes ; J  is the total  spin of the p~r system and M is its projection 
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It is worthwhile to note that duality appears to work as expected: although the 
SR calculation seems to be a bit stronger than the DR results, the latter reproduce 
the SR ones both quantitatively and qualitatively since the order of magnitude of 
cross sections are the same, and since the strong enhancement near Mp~ = i. 1 GeV 
is comparable in shape and strength. 

In fig. 5 we have plotted the mass-slope correlation given by this model. The 
result compares quite favorably with the experimental slope [16] of 10.6 +- 1.2 
GeV -2 in the A1 region and of 5.8 -+ 1.1 GeV -2 in the A2 region. 

Finally, in fig. 6 we present the Argand plot of the real versus the imaginary part 
of the partial wave I+S, (M = 0) for tl = -0.05 GeV 2 in the DR case. Surprisingly, 
this resembles resonant behavior in two-body reactions since an anti-clockwise loop 
is described with strong variation near Mp~r TM 1.1 GeV. 

This result is very different from other calculations [ 17] based on a more naive 
double-Regge formulation where there appears to be no evidence for any resonant 
behavior in this diagram. 

We have studied the leading contribution of a single dual pomeron to diffractive 
dissociation of a n meson into a pTr system in the framework of the Neveu-Schwarz 
model. It was found that the resulting amplitude satisfies asymptotically t-channel 
helicity conservation at the threshold of the~lr system, a result in nice agreement 
with data. In the single-Regge limit, for ~ ~ 0 two competing main contributions 
are obtained, one of them containing the pion pole, the other one having resonances 
in the plr channel and the associated crossed channel. 

The double-Regge limit allows one to compare the double reggeon-particle vertex, 
known for a long time, to the pomeron-reggeon-particle vertex. We find that the 
separation in two terms required by analyticity breaks the phase factors in the same 
manner for these two vertices. 

Finally we have shown that the non-resonant mass spectrum predicted by this 
model, which respects analyticity properties (Steinmann relations) and satisfies 
requirement of duality, does not require a resonant AI.  

We take this opportunity to express our gratitude to J.T. Donohue for his interest 
in this work and for useful remarks. We are also grateful to him for communicating, 
and assistance with, his numerical program for projecting amplitudes in partial waves. 

Appendix A 

The trace in (2.6) factors into two terms, one being merely the trace over the 
orbital oscillators and the second being a trace over the fermionic oscillators of the 
NSM. Each of these is reducible to a vacuum expectation value, 

Tr{wL°~v~r(kl,  1) VTr(k2, P2)~V1r(k3, P3) gp (k 4, P4) Vn(ks, Ps)) 

= TaTb, (A.1) 
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T a = Tr(wL°a :eikl'Q(-1): :eik2"Q(-P2): 

X :eika'Q(P3): :eik4"Q(P4): :eiks"Q(P5):} , 

Tb = Tr {wL°bk l "H(-1)k2 " H(-P2)ka "H(P3) 

5 

X [k 4 " H(P4 ) e"  H(P4 ) + i ~ k]" e G(T)(p4/p], w)] k 5 • H(Ps )  • 
]=1 
¢4  

For i and] not separated by a twist 

a(T)(Pi/Pj, w) =-- GOi/P/, w) 

= i{ ln(pi/Pi)lnw + iPid~iln ol{ln(Pi/P])\ 2-~ /, -~-~/!j in w ] / '  

whereas for i and ] separated by a twist 

(A.2) 

(A.3) 

(A.4) 

G ( T ) ( p i / p  i ,  w) = Gr(Pi/p/, w) 

=i{ lnC°i/Pi) + ipi ~ ln O2(!n(Pi/Pi) / ln w~l 
In w " ~-2~-- / - - - / - -~  ] j  

T a is the same trace that occurs in the conventional Veneziano model: 

Za = ( -  ln2Wwj~D/2 8 D( ~ "t ki) f (w)-D i <jH xIt (T) (P//Pi, W) ki" kj. 

Here D is the dimensionality of space-time (10 for NSM), 

f(w) = I-I (1 _ w n ) ,  
n=l  

and either /In × ]In w~ 
In2x 

*(T)(X, w) = kO(X, w) = -2~ri/exp 
21nw]  0'1(0/lnw-~i) \ 

(A.S) 

(A.6) 

(A.7) 

(A.8) 

or 
0 [ lnx / lnwt  

( ln2× ] 2\~m" ~-~-! 
g'(T)(X, w) = XI'T( X, W) = 21r exp 2 In w] [ /In w~ 

0;to/  ) 
depending on whether i and ] are separated by a twist (A.8) or not (A.9). 

(A.9) 
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In terms of the variables defined by (2.8a) and (2.8b) 

2rr oo I - 2r 2n cos(0/-  0i) + r 4n 

R*(P//Pi) = - l~ r  sin ½(O/- Oi) n=,l-I (1 - r2n) 2 

r -1/4 H * r  (p/p0 = - ~ .= 
1 - 2r 2 n - I  cos(0 / -  Oi) + r 4n-2  

( 1  - r2n) 2 

/In r ~ 1 / 2  f(w) = i 1 / 3 ~ )  w-l124rl/12f(r2), 

(A.10) 

(A.10 

(A.12) 

f(r2) 2 
S(w)  = r - ~ . . . . . .  

H (1 +r2n+l) 2 
n = 0  

(A.13) 

2¢ri d l n O l ( O i ~ / l n r 2 ~  
G(Pi/p ], w)  = In w d0i \ zTr / 2~ri / ' (A.14) 

2/r/ d l n 0 4 ~  / 2/ri /  " GT(Pi/P/ '  W)= In w dO i (A.15) 

The trace T o of eq. (A.3) can be written in terms of a vacuum expectation value: 

co 

r~ = [ I  (~ + w"+' / : l~<OJki  " f i ( -1)k2 "f/(-P2)ka "/~(Pa) 
n=0  

5 

X [k4' ~r(P4) e" #6o4/+ i ~ e" k/GTOa4/p/, w)] ks •/?/(Ps)l 0). (A.16) 
/=1 
~ 4  

The # of (A.16) is the same operator as H of (2.2) except that the fe rmionic 
oscillators b~ and b~ ÷ of the original H are replaced by 

b~ + b~ '+ (A. 17) 
d ~ -  1 + w n+-~f~ ' 

n' n+ 1/2 1/¢ = n+  ~'t~ 
a~ bta + 1 + W  n+l12- ' (A.18) 

respectively. 
A vacuum expectation value of an even number of/~/'s is given by contracting 

them in pairs in all possible ways. That is: 

2 N  N 

<ol I1 hi. HCoi)J0>-- ~ (-1£ 1-I h,.~/_, .ht2/xOm~oi~/p~/_,, w). 
i= 1 perms ]= 1 
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The parity P of the permutation is the number of H's that are skipped over in pair- 
ing the H's two-by-two. 

h i • hj X(1/2)Ogj/pi, w)  = (O[h i • il(t3i) h j"  i~(p])l 0 ) .  (A.20) 

One finds before and after the Jacobi transformation (2.8a, b) 

X(1/2)(pJp i, W) :- 5 (t3J//3i)m~+ 1/2 + (WPi/Pj)m* 1/2 
m=0 1 + W m+l[2 

2ffi ~ CO}/p~) m+ l/2 + (W'pi/p}) rn+ l[2 
(A.21) 

l r lw  m=0 1 +W tm+l/2 

If i and ] are separated by a twist it is sometimes convenient to define a XO/2): 

27ri 
X(T1/2)(pj/pi, w) = X(1/2)(-pj/p i, w) = In W X('/2)(rp}/Pi' r:) . (A.22) 

Applying (A.19) to (A.16) we have 

f i ( 1  + W n+ I / 2 ) - D T  b = e " k sX(ps /P4 ) [k  3 • k 4 k I • k2x(P4/P3)X(P2)  
n=o 

+ k2 " k3 k l  " k4XT(Pa/P2)  XT(/94) - -  k l  "k3 k2 " k4XT(t93)XT(P4/P2)] 

- -  e" k3x(ao4/P3)[k 4 • k s k I • k2X(Ps /P4)X(p2)  + k 2 • k 4 k l  " ks  

X XT(/34/P2) XT(,05) -- k I "k 4 k 2 "k s XT(,O4)XT(J35/P2)] + e "k2 

X XT(P4/p2)[k4 "k  s k l  "k3X(Ps /P4)XT(P3)  + k3 "k4 k l  "ksX(P4/P3)  

X XT(/gS) -- k 3 • k s k I . k4xCos/P3)XT(t94)  ] - e "klXT(oO4)[k4 "k  s 

X k 2 "k3X(tp5/P4)XT(Pa/P2) "l" k 3 • k4 k2 " k s x ( P 4 / p 3 ) X T ( P s / P 2 )  

- k3" ks k2 "k4XOas/Pa)XT(P4/P2)] + i[e" ksG(p4/Ps) + e" k3G(p4/P3) 

+ e" k2GT(,04/P2) + e" klGT(,O4)] [k 3 "ks k l  "k2X(Ps/Pa)X(,02) 

+ k s "k  a k 1 • k sXT(P3 /P2)XT(PS)  -- k 2 "k  s k 1 "kaX(Ps/P2)XT(P3)]  • 

(A.23) 
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A p p e n d i x  B 

Here we derive some useful formulae allowing one to obtain the residues 'of poles 
in the n plane (3.17) and for arbitrary integer k. First we exploit a property of 
hypergeometric functions [18]: 

F(a, b;c;x) = (1 - x )  c-a-b F(c-a,  c -b ; c ;  x) (B.1) 

which enables us to rewrite (3.16) in the form 

R(n) = (e" ks g 2 ( 0 t p  - -  0 ~ ( S 2 )  - -  n - -  2)(ap -- a(s2) -- n -- 1) 

× G(2 - O~a + n ,  - ? / ;  ? / -  0 /2 ,  t~a - ~ ( $ 2 )  - n ;  l ( o t p  - Ore)) 

- [re" ks + e ' k a ] ( n -  a2)(n- ~: + 1) 

G(2 - ap + n, - n ;  n - a :  + 2, ap - ~(s2) - n - 2; ~(~v - o ~ f ) )  

+ s:e" (k s - ka)(n - a : ) ( ap  - a(s2) - a2 - 1) 

X G(2 - ap + n, - n ;  n - a2, ap - t~(s2) - n - 2; ½(ap - af)) } , (S.2) 

where we have defined 
ff 

G(2a, 2/3; 2a' ,  2/3'; b) = f d~ (sin ~)2~-1 
0 

X F(2t~, 2/3;a +/3 + ~_;sin 2 ½~)F(2a,,2[3,;a,+j3,+½;cos 2 1~).  (B.3) 

Next we use a quadratic transformation of  the hypergeometric function: 

:½, 
F(2a'2b;a+b+½;½(l+x/x))=F~a+~, F(a,b;~;x) 

x )  ( B . 4 )  2 F(a+½, b+~,~,l'3" , 
a 

\a ,  b 

to find that (B.4) is 
1 

G(2a, 2/3; 2ct', 2/3'; b) = rrP(ct +/3 + ~, a '  +/3' +' ~) f dx x -1 /2  (1 - x )  b-1 
0 

1 t t 1 
[ F(ct,/3; ~ ! x)  F(a ' ,  _/3- ~4,x_) - 

1 t 1 1 x [ r ( a + ~ , / 3  + ~ , ~  +~,t~ +~) 

1.3. , 1 '+½;};x)}  F(a + ~, /3 + ~, ~,x) F(a + ~,/3 (B.5) 
- 4 x  p (a , / 3 ,  ~' , /3')  " 
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Then the problem of evaluating (3.17) is restricted to calculating the residues of 
P(2a, 2/3, 2a', 2/3')G(2a, 2/~; 2a', 2/~'; b) when one of the arguments 2a, or 2a' is 
equal to a negative integer. Let us consider for instance 2a'. Following the parity 
of 2a' one term only of (B.5) gives a residue; one of the two hypergeometric func- 
tion is reduced to a polynomial inx and the last step to be done is the calculation 
of integrals of the type 

1 
f d x  xa+g-l (1  - x)  b - l  F(a, /3;a;x)  = Ik(a, b; a, ~) , (B.6) 
o 

which is a representation of the hypergeometric function 3F2 : 

lk(a, b; a,/3) = B(a +k, b) aF2(a,/3, a +k;a, a +b +k; 1). (B.7) 

In order to exhibit clearly the analyticity properties of the result, it is convenient 
to use a generalization of Dixon's theorem [19] and rewrite 

Ik(a, b ; a , ~ ) =  F( a' b, a + b -  c t - { 3 )  
\ a + b - {3, a + b - ct 

X 3F2(-k, b ,a  +b - c~-/3; a +b - O,a +b - c~; 1), (B.8) 

where now the hypergeometric function is reduced to a finite sum of products of F 
functions. 

Thus we find the following residues R'(2a') of F(2a, 2/3; 2a', 2/3'), G(2t~, 2/~; 2a', 
2~'; b) for 2a' = -2 l  and 2ct' = - (2 l  + 1) respectively: 

R'(2/) = -(-~ l)t 2 - 2 1 -  4+ 2 (#'+tx+#)ir- 1/2 

, t I ~" ) r ~ , ~  +~- l ,  o,+~+~, o,, ~, b, ½ + b - a - ~  
X ~ + b - t ~ ,  ½ + b - / 3  

l 
X ~ (--OkO3)k 

',=0 (~),~k! 3 F 2 ( - k , b , ~  + b - i x - { 3 ; 1 2  + b - a , ~ - + b - / 3 ; 1 )  ,(B.9) 

R'(21 + 1) = ~  2-2/-4+2(~'+'~+~)1r -I/2 

XF[/3'. +½,13 ' - l ,  a + B +  1, a + ~ , f 3 +  1, b, ½ + b - a - l ]  
] \ l + b - a ,  l + b - ~  

l 
x ~ (-0~0~'+ ½)k 

~=o (~)~k! 

(S.lO) 

3F2(-k, b, ~- +b - a - / 3 ;  1 + b -  a, 1 + b - / ~ ;  1), 
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X ) k  ~- _ _  
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r(x + k) 
- ° 

r(x) 

References  

[ 1 ] P. Astbury et al., Evidence for resonance behaviour of A 1 and A 3 mesons coherently pro- 
duced on nuclei, Paper submitted to Budapest Conf., July 1977; 
Ph. Gavillet et al., Phys. Lett. 69B (1977) 119. 

[2] E.L. Berger, in Proc. Daresbury Meeting on three-particle phase-shift analysis and meson 
resonance production, 1975, ed. J.B. Dainton and A.J.G. Hey (Daresbury Laboratory, 
1975). 

[3] R.T. Deck, Phys. Rev. Lett. 13 (1964) 169; 
S. Drell and K. Hiida, Phys. Rev. Lett. 7 (1961) 199. 

[4] J.T. Donohue, Nucl. Phys. B35 (1971) 213; 
E.L. Berger and J.T. Donohue, Phys. Rev. D15 (1977) 790. 

[5] G. Fox, Proc. 3rd Philadelphia Conf. on experimental meson spectroscopy, ed. A.H. Rosen- 
feld and Kwan-Wu Lai (ALP, New York, 1972) p. 271. 

[6] G. Cohen-Tannoudji, A. Santoro and M. Souza, Nucl. Phys. B125 (1977) 445. 
[7] M.A. Virasoro, Phys. Rev. 177 (1969) 2309; 

J.A. Shapiro, Phys. Lett. 33B (1970) 361. 
[8] A. Neveu and J.H. Schwarz, Nucl. Phys. B31 (1971) 86. 
[9] L. Clavelli and J.A. Shapiro, Nucl. Phys. B57 (1973) 490. 

[10] O. Steinmann, Helv. Phys. Acta 33 (1960) 257,349. 
[ 11 ] I.T. Drummond, P.V. Landshoff and W.J. Zakrzewski, Nucl. Phys, B 11 (1969) 383; 

C.E. De Tar and J.H. Weis, Phys. Rev. D4 (1974) 3741. 
[12] J.L. Cardy and A.R. White, Nucl. Phys. B80 (1974) 12. 
[13] G. Cohen-Tannoudji, A. Santoro and M. Souza, Nucl. Phys. B95 (1975) 445. 
[14] E.L. Berger and J. Vergeest, Nucl. Phys. B 116 (1977) 317. 
[151 G. Ascoli et al., Phys. Rev. D8 (1973) 3894. 
[16] G. Caso et al., Nuovo Cim. 47 (1967) 675. 
[17] C.D. Frogatt and G. Ranft, Phys. Rev. Lett. 23 (1969) 943; 

M.J. Puhala, Phys. Rev. DI7 (1978) 814. 
[ 181 I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products (Academic Press, 

New York, 1965) p. 1043. 
[19] L.J. Slater, Generalized hypergeometric functions (Cambridge University Press, Cambridge, 

1966) p. 52. 


